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LETTER TO THE EDITOR 

COMMENTS ON "AN EXPERIMENTAL STUDY OF THE 
STABILITY OF LIQUID-FLUIDIZED BEDS" 

The experimental results in the above paper (Ham et  al. 1990) appear to have a much simpler 
explanation than the one offered by the authors. 

Table 1 in the above paper shows that the void fraction at minimum fluidization varied between 
0.398 and 0.447 with a mean value of 0.415. Since Emf is essentially geometrical, describing the 
random packing of particles, this range of values is presumably due to the lack of complete 
geometric similarity, the biggest (small) variation being probably ascribable to out-of-roundness 
of the plastic particles. 

Table 4 in the paper shows that significant fluctuations emerged above Ec in the range 0.41-0.464, 
with an average value of 0.436. The scatter is less than for emf. The simple conclusion is that the 
bed expanded by a few percent before becoming sufficiently mobile to support disturbances. Indeed, 
it would be fair to adopt the criterion Ec ~ 0.44 with no more precision being justifiable in light 
of the uncertainty in geometric similarity previously mentioned. 

The quantity Q in [A.7] is a modified Froude number interpreted by the authors as a 
dimensionless elasticity that is inferred from a stability analysis. The more straightforward 
explanation is that the results shown in figures 7-10 represent a correlation between Froude number 
and Reynolds number (Re), at a void fraction e ~ 0.44, which describes the equilibrium between 
buoyancy and drag and has nothing to do with dynamic behavior at all. This may be checked by 
using the authors' data to compute Q and Re at e = 0.44, using simple interpolation. The results 
are shown in figure l, together with the line from the authors' figure 7. Clearly the data in figure 
7 barely move when expressed this way. The correlation is every bit as good as in the original figure. 
Indeed, almost as good agreement is obtained in figure 1 by plotting Q and Re at incipient 
fluidization, a condition that again has no direct connection with either stability or elasticity. 

How does this come about? If the criterion [A.7] is used, the correlation on p. 182 becomes 

2 
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where ' f "  is a weak function of R and Re (which influences n) but contains no influence of ec 
if this is constant. (Presumably the authors' pp and Ps are identical.) 
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Figure 1. Q vs Re at E = 0.44 and at minimum fluidization. 
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Now, the equilibrium between drag and buoyancy in a uniformly fluidized bed can be represented 
(Wallis 1969) by 

2 u Pr . , 1 
gd(ps - pf) gtE) = C--dd' [2] 

where g(E) is constant if E is constant and Ca is a drag coefficient that depends on Re by way of 
an equation such as [A.14]. At very low Re, Cd ~ 1/Re and [2] becomes at ~c---0.44 (or any other 
constant value such as Emf): 

u2pr 
"-~ Re, [3] 

gd(p s - pf) 

which explains figure 8(b). Over a wider range of Re, [A.14] or some similiar correlation may be 
approximated by Cd ~ Re -~, where m < 1, as in the authors' value 0.77, rendering [1] and [2] 
equivalent. There is also some influence of n's dependence on a weak power of Re. Figure 7 is 
therefore indeed a correlation of the fluid flux needed to produce E ~ 0.44. 

The Re modified by R achieves better success in figure 10 because this compensates approximately 
for the factor Ps rather than Pr in the numerator of Q when [2] is compared with [A.7]. However, 
it would be more reasonable to leave Re alone and modify Q to make it more closely resemble 
the Froude number on the l.h.s, of [2]. Since the factor in square brackets in [A.7] does not vary 
much, the required factor is approximately R. Rather than using R itself, which would move both 
the line and the points in figure 9, it is simpler to leave the line in place and multiply the authors' 
Q by the density ratio of the particles. This has the property of raising the open points in figure 
9 by a factor of 2.47/1.19 = 2.08 and lowering the solid point by a factor of 2.47/4.14 = 0.6, which 
does indeed improve the correlation. 

It is doubtful if any significant further conclusion can be reached from these data, either about 
Batchelor's theory or about the compressibility of a fluidized bed. 
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R E S P O N S E  

In his letter, Professor Wallis suggests that our recent experiments on stable fluidization have a 
simpler interpretation than the one we ascribe to them, namely that the systems studied exhibit 
an instability whenever the bed expansion reaches E ~ 0.44. A plot of Q vs Re is given in support 
of this interpretation of the experiments. His interpretation is incorrect on several accounts: 

1. The mode of this instability is well-known to be a one-dimensional wave of 
dilation. Simple physical arguments and direct observations (El Kaissy & Homsy 
1976) show that the particle motion consists of vertical oscillations about a mean 
position. Contrary to Wallis' hypothesis, particles will always be "sufficiently 
mobile" to allow this mode of motion. Other modes involving lateral shearing 
motions of the particles may indeed be stabilized by a yield stress associated with 
dense packing. We are not unaware of this possibility, which one of us (G.M.H.) 


